Description
On a 2-dimensional grid
, there are 4 types of squares:
1
represents the starting square. There is exactly one starting square.2
represents the ending square. There is exactly one ending square.0
represents empty squares we can walk over.-1
represents obstacles that we cannot walk over.
Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once
.
在二维网格 grid
上,有 4 种类型的方格:
1
表示起始方格。且只有一个起始方格。2
表示结束方格,且只有一个结束方格。0
表示我们可以走过的空方格。-1
表示我们无法跨越的障碍。
返回在四个方向(上、下、左、右)上行走时,从起始方格到结束方格的不同路径的数目,每一个无障碍方格都要通过一次
。
题目链接:https://leetcode.com/problems/unique-paths-iii/
Difficulty: hard
Example 1:
Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:
Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths:
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:
Input: [[0,1],[2,0]]
Output: 0
Explanation:
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.
Note:
- 1 <= grid.length * grid[0].length <= 20
分析
- updating(Solution)
参考代码
class Solution:
def uniquePathsIII(self, grid):
R, C = len(grid), len(grid[0])
def neighbors(r, c):
for nr, nc in ((r-1, c), (r, c-1), (r+1, c), (r, c+1)):
if 0 <= nr < R and 0 <= nc < C and grid[nr][nc] % 2 == 0:
yield nr, nc
todo = 0
for r, row in enumerate(grid):
for c, val in enumerate(row):
if val != -1: todo += 1
if val == 1: sr, sc = r, c
if val == 2: tr, tc = r, c
self.ans = 0
def dfs(r, c, todo):
todo -= 1
if todo < 0: return
if r == tr and c == tc:
if todo == 0:
self.ans += 1
return
grid[r][c] = -1
for nr, nc in neighbors(r, c):
dfs(nr, nc, todo)
grid[r][c] = 0
dfs(sr, sc, todo)
return self.ans